2^n - 1 = 1 + 2 + 2^2 + ... + 2^(n-1), |
2^n - 1 = 1 + 2 + 2^2 + ... + 2^(n-1), n terms.
If n is even, then:
2^n - 1 = (1+2) + (2^2 + 2^3) + ... + (2^(n-2) + 2^(n-1))
= (1+2) + 2^2(1 + 2) + ... + 2^(n-2)(1 + 2)
= (1+2) [1 + 2^2 + ... + 2 ...
za_za 发表于 2011-3-8 21:25
欢迎光临 新西兰天维网社区 (http://bbs.skykiwi.com/) | Powered by Discuz! X2 |